Skip to main content

Advertisement

Log in

Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present paper reports the effects of Nd:YAG laser welding on the microstructure, phase transformation, cyclic deformation behavior, and corrosion resistance of Ti-55 wt.% Ni wire. The results showed that the laser welding altered the microstructure of the weld metal which mainly composed of columnar dendrites grown epitaxially from the fusion line. DSC results indicated that the onset of the transformation temperatures of the weld metal differed from that of the base metal. Cyclic stress-strain behavior of laser-welded NiTi wire was comparable to the as-received material; while a little reduction in the pseudo-elastic property was noted. The weld metal exhibited higher corrosion potential, lower corrosion current density, higher breakdown potential and wider passive region than the base metal. The weld metal was therefore more resistant to corrosion than the base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160

    Article  Google Scholar 

  2. N.B. Morgan, Medical Shape Memory Alloy Applications-The Market and Its Products, Mater. Sci. Eng. A, 2004, 378, p 16–23

    Article  Google Scholar 

  3. F. Nematzadeh and S.K. Sadrnezhaad, Effects of the Ageing Treatment on the Superelastic Behavior of a Nitinol Stent for An Application in the Esophageal Duct: A Finite-Element Analysis, Mater. Technol., 2013, 47(4), p 45–51

    Google Scholar 

  4. S.K. Sadrnezhaad, N.H. Nemati, and R. Bagheri, Improved Adhesion of NiTi Wire to Silicone Matrix for Smart Composite Medical Applications, Mater. Des., 2009, 30(9), p 3667–3672

    Article  Google Scholar 

  5. S.K. Sadrnezhaad and S.B. Raz, Effect of Microstructure on Rolling Behavior of NiTi Memory Alloy, Mater. Manuf. Process., 2008, 23(7), p 646–650

    Article  Google Scholar 

  6. X. Zhao, W. Wang, L. Chen, F. Liu, J. Huang, and H. Zhang, Microstructures of Cerium Added Laser Weld of a TiNi Alloy, Mater. Lett., 2008, 62, p 1551–1553

    Article  Google Scholar 

  7. S.K. Sadrnezhaad, N. Yasavol, M. Ganjali, and S. Sanjabi, Property Change During Nanosecond Pulse Laser Annealing of Amorphous NiTi Thin Film, Bull. Mater. Sci., 2012, 35(3), p 357–364

    Article  Google Scholar 

  8. T. Shinoda, T. Tsuchiya, and H. Takahashi, Functional Characteristics of Friction Welded Near-Equiatomic TiNi Shape Memory Alloy, Trans. Jpn. Weld. Soc., 1991, 22, p 30–36

    Google Scholar 

  9. S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, and A. Yamamoto, Friction Welding of TiNi Alloy to Stainless Steel Using Ni Interlayer, Sci. Technol. Weld. Join., 2010, 15, p 124–130

    Article  Google Scholar 

  10. A. Ikai, K. Kimura, and H. Tobush, TIG Welding and Shape Memory Effect of TiNi Shape Memory Alloy, J. Intell. Mater. Syst. Struct., 1996, 7, p 646–654

    Article  Google Scholar 

  11. C. Van der Eijk, H. Fostervoll, Z.K. Sallom, and O.M. Akselsen, Plasma Welding of NiTi to NiTi, Stainless Steel and Hastelloy C276, Proceedings of the ASM Materials Solutions Conference, Pittsburgh, Pennsylvania, October 13–15, 2003, p 125–129

  12. M. Seki, H. Yamamoto, M. Nojiri, K. Uenishi, and K.F. Kobayashi, Brazing of Ti-Ni Shape Memory Alloy with Stainless Steel, J. Jpn. Inst. Met., 2000, 64, p 632–640

    Google Scholar 

  13. X.M. Qiu, M.G. Li, D.Q. Sun, and W.H. Liu, Study on Brazing of TiNi Shape Memory Alloy with Stainless Steels, J. Mater. Process. Technol., 2006, 176, p 8–12

    Article  Google Scholar 

  14. H. Gugel, A. Schuermann, and W. Teisen, Laser Welding of NiTi Wires, Mater. Sci. Eng. A, 2008, 481–482, p 668–671

    Article  Google Scholar 

  15. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Effect of Nd-YAG Laser Welding on the Functional Properties of the Ni-49.6 at.% Ti, Mater. Sci. Eng. A, 1999, 273–275, p 813–817

    Article  Google Scholar 

  16. Y.H. Hsu, S.K. Wang, and C. Chen, Effect of CO2 Laser Welding on the Shape-Memory and Corrosion Characteristics of TiNi Alloy, Metall. Mater. Trans. A, 2001, 32, p 569–576

    Article  Google Scholar 

  17. X.J. Yan, D.Z. Yang, and X.P. Liu, Corrosion Behavior of a Laser-Welded NiTi Shape Memory Alloy, Mater. Charact., 2007, 58, p 623–628

    Article  Google Scholar 

  18. L. AlbertyVieira, F.M. BrazFernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, and J.L. Ocana, Mechanical Behaviour of Nd:YAG Laser Welded Superelastic NiTi, Mater. Sci. Eng. A, 2011, 528, p 5560–5565

    Article  Google Scholar 

  19. A. Falvo, F.M. Furgiuele, and C. Maletta, Laser Welding of a NiTi Alloy: Mechanical and Shape Memory Behaviour, Mater. Sci. Eng. A, 2005, 412, p 235–240

    Article  Google Scholar 

  20. R. Venugopalan and C. Trépanier, Assessing the Corrosion Behaviour of Nitinol for Minimally Invasive Device Design, Minim. Invasive Ther. Allied Technol., 2000, 9, p 67–74

    Article  Google Scholar 

  21. C.W. Chan, H.C. Man, and T.M. Yue, Effect of Post-Weld Heat-Treatment on the Oxide Film and Corrosion Behaviour of Laser-Welded Shape Memory NiTi Wires, Corros. Sci., 2012, 56, p 158–167

    Article  Google Scholar 

  22. X.-J. Yan, D.-Z. Yang, and X.-P. Liu, Electrochemical Behavior of YAG Laser-Welded NiTi Shape Memory Alloy, Trans. Nonferrous Met. Soc. China, 2006, 16, p 572–576

    Article  Google Scholar 

  23. C.W. Chan, H.C. Man, and T.M. Yue, Effect of Postweld Heat Treatment on the Microstructure and Cyclic Deformation Behavior of Laser-Welded NiTi-Shape Memory Wires, Metall. Mater. Trans. A, 2012, 43A, p 1956–1965

    Article  Google Scholar 

  24. M.D.M. das Neves, A. Lotto, J.R. Berretta, W. de Rossi, and N.D.V. Junior, Microstructure Development in Nd:YAG Laser Welding of AISI, 304 and Inconel 600, Weld. Int., 2010, 24, p 739–748

    Article  Google Scholar 

  25. C.W. Chan, H.C. Man, and T.M. Yue, Susceptibility to Environmentally Induced Cracking of Laser-Welded NiTi Wires in Hanks’ Solution at Open-Circuit Potential, Mater. Sci. Eng. A, 2012, 544, p 38–47

    Article  Google Scholar 

  26. C.A. Biffi, P. Bassani, M. Carnevale, N. Lecis, A. Loconte, B. Previtali, and A. Tuissi, Effect of Laser Microcutting on Thermo-mechanical Properties on NiTiCu Shape Memory Alloy, Met. Mater. Int., 2014, 20, p 83–92

    Article  Google Scholar 

  27. G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Laser Welding of NiTi Shape Memory Alloy: Comparison of the Similar and Dissimilar Joints to AISI, 304 Stainless Steel, Opt. Laser Technol., 2013, 54, p 151–158

    Article  Google Scholar 

  28. C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, Fatigue of Pseudoelastic NiTi Within the Stress-Induced Transformation Regime: A Modified Coffin-Manson Approach, Smart Mater. Struct., 2012, 21, p 112001

    Article  Google Scholar 

  29. H. Tobushi, T. Nakahara, Y. Shimeno, and T. Hashimoto, Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life, Trans. ASME, 2000, 122, p 186–191

    Article  Google Scholar 

  30. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Structural and Functional Fatigue of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 378, p 24–33

    Article  Google Scholar 

  31. C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, Fatigue Properties of a Pseudoelastic NiTi Alloy: Strain Ratcheting and Hysteresis Under Cyclic Tensile Loading, Int. J. Fatigue, 2014, 66, p 78–85

    Article  Google Scholar 

  32. S.A. Shabalovskaya, Surface, Corrosion, and Biocompatibility Aspects of Nitinol as an Implant Material, Bio-Med. Mater. Eng., 2002, 12, p 69–109

    Google Scholar 

  33. H.H. Huang, Corrosion Resistance of Stressed NiTi and Stainless Steel Orthodontic Wires in Acid Artificial Saliva, J. Biomed. Mater. Res., 2003, 66(4), p 829–839

    Article  Google Scholar 

  34. C.W. Chan and H.C. Man, Laser Welding of Thin Foil Nickel-Titanium Shape Memory Alloy, Opt. Lasers Eng., 2011, 49, p 121–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Mirshekari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirshekari, G.R., Kermanpur, A., Saatchi, A. et al. Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires. J. of Materi Eng and Perform 24, 3356–3364 (2015). https://doi.org/10.1007/s11665-015-1614-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1614-y

Keywords

Navigation